CERTIFICATE OF COMPLIANCE Certification Number : ESL119688A-C810H

Company:

Getac Inc.
Equipment Tested: Getac X600 Rugged Notebook Computer
Test Standard: MIL-STD-810H w/ Change 1
Details:
This is to certify that the following environmental tests have been performed on the Getac X600 Rugged Notebook Computer and found to be in compliance with the requirements and Procedure of MIL-STD-810H w/ Change 1 detailed in the following summary table.

No evidence of functional failure was observed during testing.

All calibrated Test equipment utilized during testing is maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

For further test details please reference the Eurofins Electrical and Electronic Testing NA, Inc. test report, ESL119688A-MIL.

January 26, 2023
Johnnie Evans
Date
Manager, Environmental Laboratory
Eurofins Electrical and Electronic Testing NA, Inc.

CERTIFICATE OF COMPLIANCE: Certification Number: ESL119688A-C810H

The table below is to show that the following environmental testing was performed on the Getac X600 Rugged Notebook Computer and is in compliance with the requirements of MIL-STD-810H w/ Change 1 below;

Test	Procedure Specification	$\begin{aligned} & \hline \text { MIL-STD-810H } \\ & \text { w/ Change } 1 \\ & \text { Reference } \\ & \hline \end{aligned}$	Pass/ Fail
Altitude (Low Pressure)Storage/Air Transport	Non-operating: 50,000ft with altitude change rate $2,000 \mathrm{ft} / \mathrm{min}$.	Method 500.6 Procedure I	Pass
Altitude (Low Pressure)Operation/Air Carriage	Operating: 50,000 ${ }^{\text {ft }}$ with attitude change rate $2,000 \mathrm{ft} / \mathrm{min}$	Method 500.6 Procedure II	Pass
High temperature-Storage	Seven 24 hour cycles of $33-71{ }^{\circ} \mathrm{C}\left(91-160^{\circ} \mathrm{F}\right)$ (Non-operating)	Method 501.7 Procedure I	Pass
High temperature-Operation	72 hours constant temperature exposure $63^{\circ} \mathrm{C}\left(145^{\circ} \mathrm{F}\right)$ (Operating)	Method 501.7 Procedure II	Pass
High temperature-tactical standby to operational	High storage (non-operating) to high operating (test for operation) $71 \mathrm{C}\left(160^{\circ} \mathrm{F}\right)$ Standby, $63 \mathrm{C}\left(145^{\circ} \mathrm{F}\right)$ Operating	Method 501.7 Procedure III	Pass
Low temperature-Storage	72 hours constant temperature exposure $-51.1^{\circ} \mathrm{C}\left(-60^{\circ} \mathrm{F}\right)$	Method 502.7 Procedure I	Pass
Low temperature-Operation	72 hours constant temperature exposure $-29^{\circ} \mathrm{C}\left(-20^{\circ} \mathrm{F}\right) /-31.7 \mathrm{C}(-25 \mathrm{~F})$ $-29 \mathrm{C}\left(-20^{\circ} \mathrm{F}\right)$ operating on battery mode $-31.7 \mathrm{C}\left(-25^{\circ} \mathrm{F}\right)$ operating on AC mode	Method 502.7 Procedure II	Pass
Temperature shock	Multi-cycle shocks from constant extreme temperature: $-51.1^{\circ} \mathrm{C} \sim 82^{\circ} \mathrm{C}\left(-60^{\circ} \mathrm{F} \sim 179.6^{\circ}\right.$ F), temperature shock non-operating, three cycles	Method 503.7 Procedure I-C	Pass
Contamination by Fluids	22 fluids completed	Method 504.3	Pass
Solar Radiation	Cyclic heat, 7 days	Method 505.7 Procedure I	Pass
Blowing Rain	Blowing Rain- $5.8 \mathrm{in} / \mathrm{hr}$ rain, 70 mph wind, 30 minutes per surface	Method 506.6 Procedure I	Pass
Rain Drip	Rain Drip, 15 minute exposure ($280 \mathrm{~L} / \mathrm{m} 2 / \mathrm{hr}$)	Method 506.6 Procedure III	Pass
Humidity	Cycle B3 for normal test duration of Natural Cycle (15 days) and Induced cycles (15 days)	Method 507.6 Procedure I	Pass
Humidity- Aggravated	Ten 24-hour temperature cycles between $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$ and $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ with relative humidity maintained at 95% RH non-operating mode	Method 507.6 Procedure II	Pass
Salt Fog	24 hours of salt fog soaking followed by a 24 hour drying period. Repeated for a total of two cycles	Method 509.8 Procedure I	Pass
Sand and Dust: Blowing dust	Dust resistance using Silica flour with 6 hours at $23^{\circ} \mathrm{C}$ and an additional 6 hours at $63^{\circ} \mathrm{C}$	Method 510.7 Procedure I	Pass
Sand and dust: Blowing sand	Blowing sand with a Sand concentration of $2.2+-0.5 \mathrm{~g} / \mathrm{m}^{\wedge} 3$ at 63 C	Method 510.7 Procedure II	Pass
Explosive Atmosphere	Operating for altitude $20,000 \mathrm{ft}$ and temperature of $63^{\circ} \mathrm{C}\left(145^{\circ} \mathrm{F}\right)$	Method 511.7 Procedure I	Pass
Vibration- General vibration	Category 20, Ground vehicles - Ground mobile, composite wheeled vehicles, Figure $514.8 \mathrm{C}-6,2 \mathrm{hr} /$ axis (Transportation)	Method 514.8 Category 20, figure C-6 (Operation)	Pass
Vibration- General vibration	Category 4, Typical mission/field transportation scenario, common carrier Figure $514.8 \mathrm{C}-2,2 \mathrm{hr} /$ axis (Transportation)	Method 514.8, Procedure I Category 4	Pass
Vibration- General vibration	Category 5, Loose cargo (Transportation)	Method 514.8, Procedure II, Category 5	Pass
Vibration- General vibration	Under Fig 514.8 E-1 General min. integrity exposure for non-operating	Method 514.8, Procedure I, Category 24	Pass
Shock- Functional shock	$40 \mathrm{~g}, 11 \mathrm{~ms}$, Terminal Saw tooth, Operating	Method 516.8 Procedure I	Pass
Shock- Functional shock	Peak Acceleration of 75g's, Effective Shock Duration of 8-13ms, and Cross-Over Frequency of 80 Hz	Method 516.8 Procedure I	Pass
Shock: Transit drop	26 total drops from 48 in height, free drop onto 2 in of plywood while operating	Method 516.8 Procedure IV	Pass
Shock: Transit drop in packaging	26 total drops from 36 in height, transit drop onto 2 in of plywood (Non-operating)	Method 516.8 Procedure IV	Pass
Shock: Bench Handling	4 drops on solid wooden bench top in operating mode	Method 516.8 Procedure VI	Pass
Freeze / Thaw	Rapid Temperature Change for 3 cycles	Method 524.1 Procedure III	Pass

